250 research outputs found

    Surface representations for 3D face recognition

    Get PDF

    Final infarct prediction in acute ischemic stroke

    Full text link
    This article focuses on the control center of each human body: the brain. We will point out the pivotal role of the cerebral vasculature and how its complex mechanisms may vary between subjects. We then emphasize a specific acute pathological state, i.e., acute ischemic stroke, and show how medical imaging and its analysis can be used to define the treatment. We show how the core-penumbra concept is used in practice using mismatch criteria and how machine learning can be used to make predictions of the final infarct, either via deconvolution or convolutional neural networks.Comment: 17 pages, 5 figures, part of PhD thesis KU Leuven 2022 "Understanding Final Infarct Prediction in Acute Ischemic Stroke Using Convolutional Neural Networks

    Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty

    Full text link
    The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation. In order to evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using popular discrete metrics, such as the Dice score. Recent segmentation methods use a differentiable surrogate metric, such as soft Dice, as part of the loss function during the learning phase. In this work, we first briefly describe how to derive volume estimates from a segmentation that is, potentially, inherently uncertain or ambiguous. This is followed by a theoretical analysis and an experimental validation linking the inherent uncertainty to common loss functions for training CNNs, namely cross-entropy and soft Dice. We find that, even though soft Dice optimization leads to an improved performance with respect to the Dice score and other measures, it may introduce a volume bias for tasks with high inherent uncertainty. These findings indicate some of the method's clinical limitations and suggest doing a closer ad-hoc volume analysis with an optional re-calibration step.Comment: 18 pages, 7 figures, 3 tables, published in Elsevier Medical Image Analysis (2021

    Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty

    Get PDF
    The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation. In order to evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using popular discrete metrics, such as the Dice score. Recent segmentation methods use a differentiable surrogate metric, such as soft Dice, as part of the loss function during the learning phase. In this work, we first briefly describe how to derive volume estimates from a segmentation that is, potentially, inherently uncertain or ambiguous. This is followed by a theoretical analysis and an experimental validation linking the inherent uncertainty to common loss functions for training CNNs, namely cross-entropy and soft Dice. We find that, even though soft Dice optimization leads to an improved performance with respect to the Dice score and other measures, it may introduce a volume bias for tasks with high inherent uncertainty. These findings indicate some of the method’s clinical limitations and suggest doing a closer ad-hoc volume analysis with an optional re-calibration step.NEXIS (www.nexis-project.eu), a project that has received funding from the European Union’s Horizon 2020 Research and Innovations Programme and an innovation mandate of Flanders Innovation and Entrepreneurship (VLAIO).http://www.elsevier.com/locate/mediahj2022Anatom

    An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization

    Get PDF
    The human external ears, or pinnae, have an intriguing shape and, like most parts of the human external body, bilateral symmetry is observed between left and right. It is a well-known part of our auditory sensory system and mediates the spatial localization of incoming sounds in 3D from monaural cues due to its shape-specific filtering as well as binaural cues due to the paired bilateral locations of the left and right ears. Another less broadly appreciated aspect of the human pinna shape is its uniqueness from one individual to another, which is on the level of what is seen in fingerprints and facial features. This makes pinnae very useful in human identification, which is of great interest in biometrics and forensics. Anatomically, the type of symmetry observed is known as matching symmetry, with structures present as separate mirror copies on both sides of the body, and in this work we report the first such investigation of the human pinna in 3D. Within the framework of geometric morphometrics, we started by partitioning ear shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Matching symmetry was measured in all substructures of the pinna anatomy. However, substructures that stick out' such as the helix, tragus, and lobule also contained a fair degree of asymmetry. In contrast, substructures such as the conchae, antitragus, and antihelix expressed relatively stronger degrees of symmetric variation in relation to their levels of asymmetry. Insights gained from this study were injected into an accompanying identification setup exploiting matching symmetry where improved performance is demonstrated. Finally, possible implications of the results in the context of ear recognition as well as sound localization are discussed

    Statistically Deformable Face Models for Cranio-Facial Reconstruction

    Get PDF
    Forensic facial reconstruction aims at estimating the facial outlook associated to an unknown skull specimen. Estimation is based on tabulated average values of soft tissue thicknesses measured at a sparse set of landmarks on the skull. Traditional \u27plastic\u27 methods apply modeling clay or plasticine on a cast of the skull approximating the estimated tissue depths at the landmarks and interpolating in between. Current computerized techniques mimic this landmark interpolation procedure using a single facial surface template. However, the resulting reconstruction is biased by the specific choice of the template and no face specific regularization is present. We reduce the bias by using a flexible statistical model of a dense set of facial surface points combined with an associated sparse set of skull landmarks. The statistical model also provides a probability value, which can be used to regularize the reconstruction towards more plausible outlooks. The reconstruction is obtained by fitting the model skull landmarks to the corresponding landmarks indicated on a digital copy of the skull to be reconstructed. The fitting process alternates between changing the face-specific statistical model parameters and interpolating the remaining landmark fit error using a minimal bending Thin-Plate Spline (TPS) based deformation. Furthermore, estimated properties of the skull specimen (BMI, age and gender e.g.) can be incorporated as conditions on the reconstruction by removing property-related shape variation from the statistical model description before the fitting process. This iterative statistical model based reconstruction process is shown by experiment to converge to a realistic reconstruction of the face, independent of the initial template

    Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek's hypothesis revisited.

    Get PDF
    Polychlorinated aromatic hydrocarbons (PCAHs) have been described as endocrine disruptors in animals and in accidentally or occupationally exposed humans. In the present study we examined the effect of moderate exposure to PCAHs on sexual maturation. Two hundred adolescents (mean age, 17.4 years) who resided in two polluted suburbs and a rural control area in Flanders (Belgium) participated. We measured the serum concentration of polychlorinated biphenyl (PCB) congeners 138, 153, and 180 and dioxin-like compounds [chemically activated luciferase expression (CALUX) assay] as biomarkers of exposure. School physicians assessed the pubertal development of boys and girls and measured testicular volume. In one suburb near two waste incinerators, compared with the other suburb and the control area, fewer boys (p < 0.001) had reached the adult stages of genital development (62% vs. 92% and 100%, respectively) and pubic hair growth (48% vs. 77% and 100%). Also, in the same suburb, fewer girls (p = 0.04) had reached the adult stage of breast development (67% vs. 90% and 79%). In individual boys, a doubling of the serum concentration of PCB congener 138 increased the odds of not having matured into the adult stage of genital development by 3.5 (p = 0.04); similarly for PCB congener 153 in relation to male pubic hair growth, the odds ratio was 3.5 (p = 0.04). In girls, a doubling of the serum dioxin concentration increased the odds of not having reached the adult stage of breast development by 2.3 (p = 0.02). Left plus right testicular volume was lower in both polluted areas than in the control area (42.4 mL vs. 47.3 mL, p = 0.005) but was not related to the current exposure of the adolescents to PCAHs. Through endocrine disruption, environmental exposure to PCAHs may interfere with sexual maturation and in the long-run adversely affect human reproduction

    Towards fully automated third molar development staging in panoramic radiographs

    Get PDF
    Staging third molar development is commonly used for age assessment in sub-adults. Current staging techniques are, at most, semi-automated and rely on manual interactions prone to operator variability. The aim of this study was to fully automate the staging process by employing the full potential of deep learning, using convolutional neural networks (CNNs) in every step of the procedure. The dataset used to train the CNNs consisted of 400 panoramic radiographs (OPGs), with 20 OPGs per developmental stage per sex, staged in consensus between three observers. The concepts of transfer learning, using pre-trained CNNs, and data augmentation were used to mitigate the issues when dealing with a limited dataset. In this work, a three-step procedure was proposed and the results were validated using fivefold cross-validation. First, a CNN localized the geometrical center of the lower left third molar, around which a square region of interest (ROI) was extracted. Second, another CNN segmented the third molar within the ROI. Third, a final CNN used both the ROI and the segmentation to classify the third molar into its developmental stage. The geometrical center of the third molar was found with an average Euclidean distance of 63 pixels. Third molars were segmented with an average Dice score of 93%. Finally, the developmental stages were classified with an accuracy of 54%, a mean absolute error of 0.69 stages, and a linear weighted Cohen’s kappa coefficient of 0.79. The entire automated workflow on average took 2.72 s to compute, which is substantially faster than manual staging starting from the OPG. Taking into account the limited dataset size, this pilot study shows that the proposed fully automated approach shows promising results compared with manual staging.Internal Funds KU Leuvenhttp://link.springer.com/journal/4142021-04-01hj2020Anatom
    • 

    corecore